

Ultra-high Q whispering-gallery microcavities for narrow-linewidth lasers and optoelectronic oscillators

Vladimir Ilchenko, Steve Yao, and Lute Maleki

Jet Propulsion Laboratory, California Institute of Technology

Microspheres: a solid state microcavity with submillemeter dimensions and the $Q=10^8...10^{10}$ typical for high-finesse Fabry-Perot

POTENTIAL FOR NARROW LINE, STABILITY LASERS AND OPTOELECTONIC MICROWAVE OSCILLATORS

• Diode laser stabilization:

optical locking by intrinsic feedback

• Microlasers:

low-pump power, narrow-linewidth source

• Optoelectronic oscillator:

low-phase-noise microwave photonic source

• Single-mode fiber and waveguide couplers:

possibility of true integration

• Novel high-finesse *spheroidal* cavity:

 $F > 10^4$; true FSR ~400GHz (~3nm)

in 200mkm device

Evanescent-wave coupling: phase synchronism + near-field overlap

a. Waveguide, fiber taper: $n^*_{sphere} = n^*_{coupler}$ n^*_{sphere} , n^*_{fiber} - effective refraction indices of the WG mode azimuthal propagation and coupler mode,

b. Prism and (novel) angle-polished fiber: $\Phi = arcsin(n_{sphere}/n_{coupler})$

June 2000 V.S.Ilchenko, X.S.Yao, L.Maleki

LO '2000

Time and Frequency Science and Technology Group

"Dispersion" of WG modes in microspheres

Effective refraction index for azimuthal propagation of TE_{lmq} (solid) and TM_{lmq} (dashed) modes in silica spheres at 1310nm (based on WG mode frequency approximation by *C.C.Lam et al J.Opt.Soc.Am.* **B9**, 1585 (1992)

JPL

Fiber Reflecting surface normal

Energy coupling efficiency at resonance over 60% (single-coupler insertion loss ~2.1dB); $Q_{load} = 3.2 \times 10^6$ at 1310nm; sphere diameter 470 μ m.

Time and Frequency Science and Technology Group

Simple fiber coupler

Maximum transmission at resonance ~23.5% (fiber-to-fiber loss 6.3dB); $Q_{load} > 3 \times 10^7$ at 1550nm; sphere diameter 405 μ m. Unloaded $Q_o \approx 1.2 \times 10^8$.

Time and Frequency Science and Technology Group

Pigtailed microsphere package

A prototype fiber pigtailed microsphere package. Insertion loss ~12dB; loaded Q~3×10⁷ at 1550nm

Microspheres for optical frequency locking in diode lasers

Intracavity Rayleigh scattering couples degenerate opposite-directed WG modes *LaserPhysics2*, 1004(1992), Opt.Lett., 20, 1835 (1995)-> resonance optical feedback -> optical locking of diode lasers

Frequency locking of diode laser to high-Q microsphere cavity microsphere resonator (WGMR):

Frequency

Power spectrum of 607MHz beatnote between two lasers locked to orthogonal-polarization modes in a microsphere.

Free-running laser linewidth ~15MHz, loaded Q of the sphere 5×10^7 (unloaded Q=1.1×10⁹); wavelength λ =850nm, sphere diameter D=370 μ m

Dashed line is the lorentzian fit with natural linewidth parameter 720Hz

Microspheres for optical frequency locking in diode lasers

Close integration of microspheres with laser diode chips enables creation of ultracompact sub-kHz linewidth laser sources

Topologies suggested V.V.Vassiliev, V.L.Velichansky, V.S.Ilchenko, M.L.Gorodetsky, L.Hollberg, A.V.Yarovitsky, "Narrow-linewidth diode laser with a high-Q microsphere resonator", *Opt.Commun.*, **158**, 305-12, 1998.

OptoElectronic Oscillator

A Bench Top 10 GHz OEO

A Typical OEO Setup

Oscillation condition:

$$\Phi = 2\pi f_o L/c = m2\pi$$

$$Q = 2\pi f_o L/c$$
 L : loop length

- * Very small phase noise -140dBc/Hz @ 10GHz, 10kHz from carrier
- * Effective microwave Q scales up with frequency; components for ≥40 GHz available-> improved potential at mm-wavelengths

LO 2000

Two variants of microsphere-based OEO

 With external laser locked to a WG mode; microsphere acts as a high-Q MW sideband filter

WG mode selection provided by laser locking

• Based on a ring laser containing a microsphere and an optical amplifier

WG mode selection provided by optical filter inside the ring

Microsphere-based OEO

Optical spectrum of the microsphere-based ring laser. Semiconductor optical amplifier (E-Tek LDOA-1300). Microwave loop open; no optical filter

Spectrum contains several components separated by 0.98nm - "large" free spectral range of the sphere.

Spectrum of microwave oscillation in a complete ring-laser OEO with erbium-doped fiber-optic amplifier (Nortel FA-17) and tunable fiber-optic filter (DiCon TE-9-1565).

Microsphere diameter D~360mm; l=1,250; unloaded quality-factor Q=1.2×108

Device integration concept: OEO on chip

Discrete-element OEO

On-chip integration concept

Photodetector (reversely biased electro-absorption modulator)

A pigtailed erbium microlaser

Single-mode input-output fiber coupler 980/1550nm

Typical laser emission spectrum

A pigtailed erbium microlaser

Power spectrum of laser emission obtained by autocorrelation method. Gaussian fit with 780kHz linewidth; predominant technical fluctuations.

5 second scan; 1kHz resolution BW

Novel geometry for WG microcavity

WHY SPHERES?

low material loss (transparent material)

low bending loss (high-contrast boundary)

LOW SCATTERING LOSS (TIR always under grazing incidence) $\Theta \rightarrow \pi/2$; compare to disks/ rings:

$$\frac{I_R}{I_I} = e^{-(\frac{4\pi\sigma}{\lambda}\cos\Theta)^2}$$
 (J.W.S.Rayleigh)

EVEN WITH MOLECULAR ROUGHNESS σ, ONLY CURVATURE CONFINEMENT ALLOWS Q LIMITED BY MATERIAL ATTENUATION!!

 $10^8...10^{10}$ in spheres vs. $10^3...10^5$ in microrings

Drawback: "too many modes" compared to planar rings.

Novel geometry for WG microcavity

A solution.

Microphotograph and the cross section of a novel geometry highfinesse dielectric microcavity with whispering gallery modes

Novel geometry for WG microcavity

Spectrum of whispering-gallery modes in spheroidal dielectric microcavity (D = $160\mu m$; d = $35\mu m$). Free spectral range 383 GHz (3.06nm) near central wavelength 1550nm. Individual resonance bandwidth 23MHz (loaded Q = 8.5×10^6). Finesse $F = 1.7\times10^4$